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Abstract
We use a recently developed tool based on geometric algebra to analyse the
phase transition in quartz, the nature of the disordered high-temperature phase
of cristobalite and the dynamics of silica glass. The approach is to analyse
configurations generated by the reverse Monte Carlo or molecular dynamics
simulations in terms of rigid-unit-mode (RUM) motions, but concentrating on
quantifying the real-space distortions rather than performing a reciprocal-space
analysis in terms of RUM phonons. One of the important results is a measure of
the extent to which the amplitudes of motion are directly attributable to RUMs,
and how the RUM fraction changes as a result of a phase transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Some understanding of the displacive phase transitions in framework materials, namely
materials whose crystal structures can be described as frameworks of connected polyhedral
groups of atoms, has been attained on the basis of the rigid-unit-mode (RUM) model [1,2]. The
essence of this model is to recognize that the energy cost associated with the deformation of a
structural polyhedron is much higher than the energy change due to swinging two polyhedra
about a common vertex. As a result, a displacive phase transition is more likely to occur
if the framework can distort without the individual polyhedra having to be deformed. The
well known octahedral tilting phase transitions in perovskites (see figure 1) are representative
examples of this idea, but the greatest progress in applying the RUM model has come in the
study of silicates composed of corner sharing SiO4 and AlO4 tetrahedra. Classic examples are
the phase transitions in quartz and cristobalite [3].

The RUM model has been formulated in terms of phonon modes, so it is a reciprocal
space picture. An algorithm, known as the ‘split-atom model’, has been developed to allow
the calculation of all phonon modes that propagate without deformations of the polyhedra, the
so-called RUMs [1,3]. Because RUMs have low energy (typically of order 1 THz or less), the
RUMs are natural candidates as soft modes for displacive instabilities. This point has been
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Figure 1. The octahedral rotation mode in the perovskite structure is an example of a RUM.

well documented for quartz [4]. The other important issue is that the high-symmetry phase
of a material typically has many more RUMs than its low-symmetry phase. Because RUMs
have low frequencies, they will have high amplitudes, scaling as T/ω2. It is therefore to be
expected that a significant part of the dynamics of high-symmetry phases will be dominated
by the RUM contribution. Indeed, in cristobalite it has been proposed that the considerable
degree of structural disorder seen in the high-temperature phase can be fully explained by this
mechanism [5, 6]. Recent RMC studies of the phase transition in quartz have also suggested
that the phase transition allows the excitation of more RUMs, which give the appearance of
dynamic disorder [7].

The reciprocal-space analysis of structural fluctuations is useful, but not without
limitations. In particular, the modes which are active in a real material do not fall neatly
into a family of RUMs consisting entirely of displacements and rotations of the tetrahedra, and
another family of non-RUMs consisting entirely of distortions of the tetrahedra. Instead, any
mode can include components of displacive, rotational and distortive motion, with the relative
proportions of the different types varying more or less continuously from low-frequency modes
with little distortive component to high-frequency modes with little rigid-unit component. We
have therefore recently developed a real-space analysis of RUM fluctuations [8] based on the
technique of geometric algebra (GA) [9, 10]. This allows us to determine the extent to which
an instantaneous ‘snapshot’ of an atomic configuration can be described in terms of RUM
displacements, by decomposing the motion into displacive, rotational and distortive motion.
In fact this approach is providing the first quantitative analysis of the effects of RUMs on
creating dynamic disorder in crystals.

Our purpose in this paper is to combine our GA RUM analysis with the results of
reverse Monte Carlo (RMC) simulations of the phase transition in quartz to provide a detailed
understanding of the changes in the RUM spectrum through the phase transition. This will
properly quantify the discussion of the role of RUMs in the phase transition. We also extend
the analysis to studies of the dynamics of cristobalite and amorphous silica.

2. Fitting a rotation

To quantify the effect of RUMs we make use of the bond vectors within each polyhedron. Let
us suppose that we have two slightly different forms of the same structure, in which the atoms
have shifted slightly and the polyhedra have different orientations but no bonds have broken
or formed. For each bond we have a vector from the central atom p to an atom q at a vertex
of the polyhedron; for one form of the structure let us call this vector PQ, for the other form
PQ′. For example, PQ might be the bond vectors in an ideal structure with perfectly regular
tetrahedra, while PQ′ might be a snapshot of the dynamic disorder in this structure; or both
PQ and PQ′ may be snapshots of the system in different states. Our assumption, from the
rigid-unit picture, is that there exists a rotation of the polyhedron p which takes the set of
vectors PQ very close to PQ′.
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Figure 2. The best-fit rotation is that which minimizes the mismatch value M .
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Figure 3. Where both rotation and distortion are present, there will be some residual mismatch,
which can be divided into bending and stretching terms.

2.1. Mismatch equation

We can write down a vector PQ′′(PQ, R), representing the vector PQ after the rotation
defined by R; this allows us to write a mismatch vector E, given by Eq = PQ′′ − PQ′.
Minimizing this mismatch with respect to the parameters of a rotation will give the rotation
which best fits PQ onto PQ′. This is illustrated in figure 2.

If the bond lengths lPQ, lPQ′ differ, than a part of the residual distortion can be attributed
to a bond-stretching term. The remainder of the distortion is due to flexing of the tetrahedral
angles. So long as the flexions are small then the bond-stretching and bond-angle-bending
displacements of the atom Q are approximately orthogonal to each other, so that we may divide
the residual distortion E2

q,after into bending and stretching terms, thus: E2
q,after = m2

bend +m2
stretch.

This is illustrated in figure 3.
We define a mismatch score M for the polyhedron by summing the squares of the mismatch

vectors Eq over all the bonds in a polyhedron:

M =
∑

q

E2
q . (1)

Usually q = 4 as we are often dealing with SiO4 tetrahedra.
We can take M as a function over a vector space whose basis is the parameters of the

rotation. In a previous paper [8] we showed that the formalism of GA [9, 10] gives a very
convenient parametrization of a rotation, giving us an explicit algebraic expression for M

which can easily be differentiated by the parameters to give ∇M .
To find the minimum of M we use the method of steepest descents, starting from a zero

rotation and taking steps in the direction of −∇M until |∇M| is sufficiently close to zero to
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be considered a minimum. This gives the best-fit rotation for the polyhedron and the value of
M at the minimum represents the residual distortion of the polyhedron.

In this analysis we are clearly taking the displacement of the tetrahedron to be the
displacement of the central atom, which is implicitly subtracted from our analysis when we
take the bond vectors relative to the central atom. Our discussions of disorder hereafter focus
on the orientational (rotational and distortive) disorder of the tetrahedra.

3. Reverse Monte Carlo modelling

Recently we have carried out a series of RMC studies on framework silica structures [6, 7].
These have been based on neutron total scattering studies performed at the ISIS spallation
neutron source. The RMC method was modified to account explicitly for the Bragg peaks [11].
As a result, the RMC simulations are designed to account for both short- and long-range order,
and will highlight how fluctuations of the structure give short-range structures that differ from
the average structure of the long-range order.

The RMC method is used to generate configurations of atoms that are consistent with the
total scattering data. In our case, this means that the configurations are consistent with the
total scattering intensity, the pair distribution functions and the intensities of the Bragg peaks.

In our study of quartz [6], measurements were performed over a wide range of temperatures
below the phase transition temperature, and for some temperatures above the phase transition.
The RMC configurations therefore provide information about changes in both short-range
and long-range order as a continuous function of temperature on heating through the phase
transition. The data on cristobalite are mostly for the high-temperature disordered phase, and
as a result it has not been possible to study the phase transition per se. Instead, the focus of
our attention in this case is the nature of the structural disorder in the high-temperature phase.

Two configurations were generated from the scattering data at each temperature value.
Both configurations started with the same initial configuration, but the stochastic nature of
the RMC algorithms means that the two configurations differed slightly from each other. We
treat the two configurations as two snapshots of the dynamic disorder, and apply our rotor-
fitting algorithms, taking the bond vectors PQ from one configuration and PQ′ from the
other. The initial mismatch score Mbefore before fitting a rotation gives a measure of the total
orientational disorder, while the residual mismatch Mafter after fitting a rotation represents
actual tetrahedral distortion; the difference between the two Mrot is attributable to rotational
motion of the polyhedra.

When we take more than two configurations and compare all the pairs, we find little
variation in the results (on the order of tens of Å2 out of several thousands), indicating that such
configurations of several thousand polyhedra each represent a good sample of the disorder.
It is however important to be sure that the RMC fitting is correct and fully converged; we
have sometimes found configurations to give wildly different results when the RMC run was
interrupted before full convergence.

Since the two configurations represent structures with the same topology, but are generated
independently, they can be thought of as two snapshots separated by an infinitely long time
interval.

4. Quartz

Figure 4 shows the degree of disorder in quartz as a function of temperature. The values given
are the mismatch scores M in Å2, summed over 24 000 bond vectors in 6000 polyhedra.
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Figure 4. The dynamic disorder in quartz is largely accounted for by rigid-unit motions of the
tetrahedra. The difference between the total orientational disorder and the tetrahedral distortion
is due to rotational motion. The horizontal axis gives temperature in K; the vertical axis gives
mismatch score M in Å2 summed over 24 000 bond vectors in 6000 polyhedra.

Figure 5. The proportion of the orientational disorder accounted for by rotational motions of
the polyhedra increases with temperature, exceeding 90% in the high-symmetry β phase. The
horizontal axis gives temperature in K. Proportions are given as percentages of the total orientational
disorder at that temperature.

We note first that at room temperature and above the actual tetrahedral distortion is much
less than the total orientational disorder. The large difference between the two indicates the
contribution of RUMs to the dynamic disorder. Figure 5 gives the rotational contribution as a
percentage of the total disorder; this contribution rises from about 70% at room temperature
to almost 90% just below the phase transition, and increases above 90% in the β phase. The
amplitude of the RUMs increases with temperature much faster than the amplitude of the
non-RUM disorder.
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Figure 6. Each of the snapshots can be compared with a framework of ideal tetrahedra. The
mismatch between each snapshot and the ideal is approximately half the residual mismatch between
one and the other, indicating that the two snapshots represent uncorrelated distortions of the ideal
tetrahedra; they represent two states of disorder separated by an infinite time interval. Horizontal
axis, temperature in K; vertical axis, total mismatch score in Å2.

The size of the rotations allowed by rigid-unit motion is striking. A total mismatch score
of 6000 Å2, which is achieved in the β phase, corresponds to a mismatch per bond of 0.25 Å2.
This signifies an RMS displacement of 0.5 Å. Since this mismatch is largely due to rotation,
we can estimate the RMS rotation to be about 0.3 rad or 17◦, given a bond length of about
1.62 Å.

The tetrahedral distortion can be further divided into the terms due to variation in bond
lengths and due to bending of the O–Si–O bond angle. It is clear that the distortion is primarily
due to bond bending, with a much smaller bond-stretching component. The nature of the
distortions does not appear to change over the temperature range of this study.

Figure 6 shows a comparison of each of the configurations with an ideal framework of
tetrahedra; that is, each polyhedron is compared with one with ideal tetrahedral angles and a
bond length appropriate to an Si–O bond at that temperature. The resulting mismatch score
indicates the degree of distortion of the tetrahedra. The figure shows that the mismatch between
each configuration and the ideal is approximately half the residual mismatch between one and
the other. Now, the residual mismatch score is a measure of the square of the distance of the
atoms from their ideal positions at the vertices of a tetrahedron. The mismatches (1 to ideal) and
(2 to ideal) both represent distortions of the ideal tetrahedron. For a given atom, these distortions
are two vectors r1, r2, giving mismatches r2

1 , r2
2 . The mismatch (1–2) is then given by (r1−r2)

2.
If the average of (r1 −r2)

2 is equal to the average of r2
1 +r2

2 , then there is no correlation between
the directions of r1 and r2. This fits well with our conception of the two configurations
representing snapshots of the disorder taken at two widely separated moments in time.

It is known that at low temperatures the polyhedra in quartz are distorted from their
geometrically perfect forms, and indeed we can see in figure 6 that the distortion of our
configurations relative to geometrically perfect tetrahedra does not tend to zero as temperature
tends to 0 K, but rather tends to a value of about 120 Å2. This would indicate that on average
the oxygen atoms are about 0.07 Å from the geometrically ideal position. The distortions of
the two different configurations, however, remain uncorrelated.
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Figure 7. The drop in RUM amplitude due to the α–β phase transition is well fitted by a model in
which a fraction frum of the RUMs from the β phase keep the same frequency ωrum in the α phase,

while the frequency of the remaining fraction (1−frum) increases by �ω = K(Tc −T )
1
4 . For this

fit frum = 0.22, ωrum ≈ 1.2 THz, K ≈ 0.19. Horizontal axis, temperature in K; vertical axis, Mrot
T
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4.1. Order parameter

The α–β phase transition is clearly visible in the dynamic disorder, which drops dramatically as
the temperature falls below the transition temperature. This is almost entirely due to the effect
of the phase transition on the RUMs, as the tetrahedral distortion is almost insensitive to the
phase transition. There exist phonon modes which are RUMs in the high-symmetry β phase,
involving displacements and rotations of the tetrahedra, but which develop a component of
tetrahedral distortion in the low-symmetry α phase. This change is accompanied by a dramatic
decrease in amplitude, as the energy cost of the distortion increases the frequency of the mode.
We attribute the changes in dynamic disorder with temperature to the effects of the symmetry
change on the RUM phonons and the resulting loss of rotational amplitude.

To find a simple interpretation of our data in terms of the effect of the phase transition,
we take the mismatch scores Mrot to be a measure of the mean squared amplitude 〈θ2〉 of the
active RUMs. A simple Einstein model suggests that

〈θ2〉 ∝
∑

RUMmodes

T

ω2
mode

(2)

and we therefore plot Mrot
T

against T to observe the behaviour of the RUM frequencies. These
data are presented in figure 7.

The split-atom model [1] would suggest that, as the average tilt |φ| of the polyhedra
relative to their positions in the β phase increases from zero, some modes which are RUMs in
the β phase gain frequency in proportion to sin |φ| as they develop a component of tetrahedral
distortion. Since the phase transition in quartz is of almost tricritical character, and we do not
approach the phase transition closely enough to observe any first-order discontinuity, we take
it that

|φ| ∝ (Tc − T )
1
4 . (3)

We therefore adopt a model in which a fraction frum of the RUMs from the β phase remain
true RUMs in the α phase, keeping the same frequency ωrum, while the remaining fraction
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(1 − frum) develop a component of tetrahedral distortion and their frequency increases by
�ω = K(Tc −T )

1
4 . This increase in frequency then leads to a decrease of rotational amplitude

as given by the Einstein model above. We fitted this model to our data taking frum, ωrum and
K as parameters, calculating the expected form of the graph of Mrot

T
against T for a given set of

values of these parameters and finding the values which gave the best fit to the data as measured
by the least squared value of the difference between calculated values and data points.

For this fit the optimum values were frum = 0.22, ωrum ≈ 1.2 THz, K ≈ 0.19, with
Tc = 860 K. The fit was quite loose, as ωrum and K can vary together without seriously
affecting the fit, although frum was quite strongly constrained. This is reasonable given that
our simple model does not take into account such factors as variations in the moment of inertia
of the polyhedra. In any case, the functional form appears to be correct.

The idea that the number of RUMs in a system changes as a result of a phase transition
was recognized with the first RUM calculations, and has been attributed to the change
in symmetry [1–3]. Moreover, this idea has been used to explain the large temperature
dependence of some of the phonons in quartz measured by inelastic neutron scattering. It
is useful to compare the quantitative analysis presented here with the direct calculations of
the RUM spectrum by the split-atom method. This approach is used to generate a density of
states [13]. Because the split-atom method does not include forces other than those that prevent
deformations of polyhedra, the RUMs have zero frequencies, and the densities of states do not
fall to zero as ω → 0. This contrasts with the normal Debye ω2 form of the density of states
at low ω. In fact, the size of the low-ω split-atom density of states provides a quantitative
measure of the RUM flexibility of a structure.

We have used this approach to estimate the inherent RUM flexibility of the two phases of
quartz. The split-atom densities of states are shown in figure 8. The important point to note
is that there is a considerable shift of some of the low-ω density to slightly higher frequencies
(in the sub-2 THz regime). It is not realistic to compare this effect directly with our estimate
of an effective persistent RUM fraction above, but in general terms the picture that is given by
the GA analysis of the RMC configurations is matched in the split-atom analysis.

5. Cristobalite

There is considerable evidence for a high degree of structural disorder in the high-temperature
phase of cristobalite [14, 15]. The ‘average’ structure, namely that obtained by structure
refinement from Bragg diffraction data, has the average position of the oxygen atoms lying
exactly halfway between its two silicon neighbours. This means a linear Si–O–Si linkage,
something that is not common. It is more usual for this linkage to be bent to around 145◦. The
crystal structure refinements show evidence for large-amplitude motions of the oxygen normal
to the axis of the linkage. This can be interpreted as considerable bending of this linkage due to
large-amplitude rotations of the SiO4 tetrahedra [16]. It had been suggested that this could be
achieved through the formation of many domains of the low-temperature phase or of another
lower-symmetry structure, with these domains switching dynamically to create the average
structure. The initial RMC work has subsequently shown that this interpretation is not what is
actually happening, and instead an interpretation of the disorder based on the excitation of the
RUM spectrum is the more likely explanation. We now use our GA analysis to quantify this
idea.

For cristobalite data were available for five temperature points, though since only one
lies in the low phase no order-parameter fit is possible. The simulations were carried out on
varying numbers of polyhedra (4000 in the low phase and 8000 in the high) but the results



Real-space rigid-unit-mode analysis of dynamic disorder in quartz, cristobalite and amorphous silica 4653

0

5000

10000

15000

20000

0 5 10 15 20 25

Frequency (THz)

Beta phase Alpha phase

0

5000

0 2 4 6 8

Figure 8. Density of states for quartz from the split-atom model. Horizontal axis, frequency
in THz; vertical axis, histogram of g(ω), arbitrary units. Inset: low-frequency regime showing
shift to higher frequencies in α-quartz compared with β-quartz.
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Figure 9. In cristobalite we see the same type of behaviour as for quartz. Note that the disorder in
cristobalite is greater than that in quartz, as cristobalite possesses more RUMs.

have been scaled to the equivalent of 6000 polyhedra in all cases to facilitate comparison with
the quartz data. The results are plotted in figure 9.

The type of behaviour is the same as in quartz, with a large amount of dynamic disorder
in the high phase, dropping rapidly in the low phase, and with most of the disorder being
accounted for by RUMs. It is noticeable that the amount of rotational motion in cristobalite is
considerably higher than in quartz (approximately twice as much mismatch), indicating that
the structure is considerably more flexible.
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Figure 10. Density of states for cristobalite from the split-atom model. Horizontal axis, frequency
in THz; vertical axis, histogram of g(ω), arbitrary units. Inset: low-frequency regime showing
non-Debye dependence at low ω in high cristobalite.

Following the analysis for quartz, we compare our GA analysis with the results of split-
atom calculations of the RUM densities of states of the two phases of cristobalite. These are
shown in figure 10. It is clear we expect many more RUMs in the high-temperature phase,
as shown in our GA analysis. This has been demonstrated by inelastic neutron scattering
measurements [6].

6. Dynamic disorder in a glass

We have also applied our analysis to a molecular dynamics simulation of a glass framework, so
as to quantify the importance of rigid-unit motion in an amorphous structure [17,18]. This is an
interesting case as the origins of flexibility in amorphous frameworks are not well understood.
A Maxwell count of the constraints and degrees of freedom in a tetrahedral framework would
indicate that the structure was neither floppy nor overconstrained but rather on the boundary
between the two, making it difficult to say whether a structure has any RUMs or not. In the case
of crystalline structures such as quartz and cristobalite, the symmetry of the structure makes
certain constraints redundant leaving the structure underconstrained and allowing RUMs. In
the glass, however, it is not clear how the floppy modes arise.

We studied a series of frames from a movie of an MD simulation [18] of SiO2 glass at 50
K. The frames were spaced 20 MD timesteps apart and we studied some 600 frames, covering
12 000 timesteps. The length of an MD timestep was 0.002 ps, so frames were spaced 0.04 ps
apart. This is a very different regime from the RMC simulations which we studied above, as
successive frames are very closely spaced in time; the interval between successive frames is
considerably less than the period of a RUM. Note that a frame spacing of 0.04 ps is a frame
frequency of 25 THz. The simulation included 4096 SiO2 polyhedra.

Figure 11 shows the results of an analysis in which a frame N was compared with all
subsequent frames N + 1, N + 2, . . . in the movie. The results for frame 51 show the character
of the results. The total mismatch is divided into rotational and distortive components. The
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Figure 12. Mean and variance of the rotational and distortive components of the motion. Horizontal
axis, starting frame; vertical axis, total mismatch score in Å2.

distortive component rapidly (within two frames) reaches an equilibrium value and scarcely
varies from this value thereafter, regardless of the time interval between frames. We attribute
this variation mostly to high-frequency thermal agitation of the structure. The rotational
component grows more slowly from zero towards an average value over a space of 10–15
frames, indicating the structure’s gradual evolution in phase space. This component also
displays much more variation about the mean. This indicates that large-scale reorientations of
the structure, achieved by rigid-unit motion, are taking place.
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The average size of the rotational component (	150 Å2) is much greater than that of the
tetrahedral distortion (	40 Å2) indicating the dominant role of floppy modes in the dynamics
of the glass.

Since the time between frames is much less than one period of the floppy modes which
are active in the glass, we can observe the gradual growth of the RUM component over some
10 or 15 frames from zero towards a maximum value. Having reached this value, however,
the structure does not evolve back along the same path towards a zero RUM mismatch, but
instead moves elsewhere in phase space, indicating constant changes in the set of active floppy
modes. The large variations in the mismatch score appear to show the gradual evolution of the
structure through a phase space defined by rigid-unit motions of the tetrahedra.

For any given frame, we can perform an analysis such as the one given for frame 51.
Rather than plot such a graph for each of several hundred frames, we can summarize the
results by giving the mean and variance of the rotational and distortive components of the
disorder, as shown in figure 12. The mean for frame X was calculated beginning with the
comparison with frame X+15, so as not to drag down the average by including the initial gradual
rise. Two phenomena are evident. Firstly, the average of the rotational component decreases
gradually across the figure, since the distance in phase space from the final configuration is
decreasing. Secondly, the RUM component varies considerably as the structure undergoes
large reorientations through rigid-unit motion, while the distortive component scarcely varies.
This component we ascribe to thermal agitation of the polyhedra by high-frequency modes
which do not lead to large atomic motions and whose average remains almost constant over
these several thousand polyhedra.

It has been suggested that the low-energy dynamics of glasses involves two-level tunnelling
states in localized double-well potentials [19, 20]. Molecular dynamics simulations indicate
that large tetrahedral rearrangements can occur at a small energy cost, and these rearrangements
have been identified with the existence of double-well potentials [17, 18]. The split-atom
model suggests that amorphous silica can support floppy modes analogous to RUMs much
as do crystalline silica polymorphs such as cristobalite, and these modes would provide a
mechanism for such large tetrahedral rearrangements at low energy cost. Our GA analysis has
for the first time quantified the role of rigid-unit motion in these rearrangements.

7. Summary

The GA method for performing a real-space analysis of RUM motions has been applied to a
number of systems in this paper. This has enabled us to obtain a quantitative estimate for the
fraction of the atomic motions that are due to RUMs. The most extensive data are for quartz,
and we have been able to show how the degree of RUM motion changes as a result of the
nearly continuous change in structure on cooling through the phase transition. This method
has provided the first quantitative measure of the role of RUMs in determining the dynamic
disorder in these materials, giving essential support to the interpretation of structural disorder
provided by the RUM theory.
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